

Department of Geological Sciences | Indiana University © 2012, P. David Polly

Phylogenetics for Mathematica
User’s Guide
Version 2.1, November 2012

This package is used in Indiana University courses
Geol-G 562 Geometric Morphometrics
Geol-G 563 Quantitative Paleontology

P. David Polly
Department of Geological Sciences
Indiana University
Bloomington, Indiana 47405 USA

http://mypage.iu.edu/~pdpolly/
pdpolly@indiana.edu

WALLABY

HUMAN

LEOPARD

FOSSA

DOG

OTTER

Node 3

Node 4

Node 2

Node 1

Node 0

0 20 40 60 80

© 2012, P. David Polly 2

Table of Contents

Table of Contents ... 2	

Installing the package .. 2	

Using Mathematica .. 3	

Basic phylogenetic functions .. 4	

DrawNewickTree[tree] .. 4	

IndependentContrasts[tree, trait] ... 4	

MakePHYLIPLabels[labels] .. 5	

PhylogeneticMatrices[tree] .. 5	

PhylogeneticsVersion[] ... 5	

RandomWalk[n, i] ... 6	

ReadNewick[filename] ... 6	

ReconstructNodes[Tree, Trait] ... 7	

RerootTree[tree, node] ... 8	

SimulateContinuousTraitOnTree[Tree, Rate (,StartValue, IncludeNodes)] 9	

SimulateCorrelatedTraitsOnTree[Tree, CovarianceMatrix (,StartVector, IncludeNodes)] 10	

TableToTree[table] .. 10	

TreeToTable[tree] ... 11	

Acknowledgements .. 12	

Bibliography .. 12	

Install ing the package

1. Download the latest version of the package at
http://mypage.iu.edu/~pdpolly/Software.html (right click on link to save as file)

2. Open the file in Mathematica
3. Under the File menu, choose “Install”
4. Under Type of Item choose “Package”, under source choose the file you just saved,

under Install Name choose a short name for the package (e.g., “PollyPhylogenetics”)
5. Once installed, enter the command “<<PollyPhylogenetics`” to use the functions.
6. Use the function PhylogeneticsVersion[] to determine which version you have

installed.

© 2012, P. David Polly 3

Using Mathematica

Mathematica has a unique interface that takes a while to get used to. You open to a blank
page, like a word processor, where you can type anything youwant. Most of the time you will
type commands that do things with your data: connect to databases, plot graphs, carry out
calculations. Unlike other statistical or mathematical programs, the commands you type and
the output you get remain on the page, which gives you a record of what you’ve done step-by-
step. To help organize your work, you can add headers, format boxes, etc. with the Format
Menu.

Cel ls are an important organizing feature of Mathematica . Note the “cell”
markers on the right margin. Each cell is bounded by a bracket and commands within a cell
are executed together. You can open and close cells by double clicking the bracket. This
can be useful if you have lots of stuff in a notebook… you can give a section a heading, which
causes cells in that section to be grouped, after which you can close the section by double
clicking.

Shift + Enter causes a cel l to be executed. Pressing the enter key creates a new
line, just like in a word processor, but when you want to execute a command you typed, you
type SHIFT+ENTER somewhere in the cell and all commands in the cell are executed.

Mathematica Commands. Mathematic is designed to be as easy to learn as possible so
that you can concentrate on working instead of the program. Almost all commands are
English words written out in full with capitals at the beginning of words and brackets [] at the
end of the command. For example, the command to calculate an average of a set of
numbers is Mean[], the command to do a principal components analysis is
PrincipalComponents[], and the command to take the logarithm of a number is Log[].

Formatt ing Output. Mathematica is clever about how it provides output and it tries to
keep the results as accurate as possible. For example, if you calculate the average of the
following numbers

Mean[{1, 5, 10, 3, 20, 40}]

the answer extends to many decimal places, so Mathematica reports it more precisely as a
fraction: 79/6. You may want an ordinary number, however, and you can force Mathematica
to format its output the way you want:

Mean[{1, 5, 10, 3, 20, 40}] // N

This command now gives you 13.1667. Another useful formatting function is
//MatrixForm, which causes a table to be displayed neatly in columns instead of wrapping
around the page.

Graphics. Mathematic is good at graphics. You can either use simple functions like
ListPlot[] to create a generic graph, or you can experiment with Graphics[] to create a
completely customized graphic.

© 2012, P. David Polly 4

Basic phylogenetic functions

DrawNewickTree[tree]

Parses a Newick tree string and renders it graphically as a tree with the tips and nodes
labeled and the branches drawn proportional to the branch lengths in the file. This function
requires branchlengths.

Arguments:

• tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

Example:

DrawNewickTree[tree]

IndependentContrasts[tree, trait]

This function calculates standardized independent contrasts (Felsenstein, 1985, 2004) for a
single continuous trait on a tree.

Arguments:

• tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

• trait is a two column matrix with taxon names in the first column and trait
values in the second column. Taxon names must match the names in tree.

Example:

contrasts = IndependentContrasts[tree, trait];

WALLABY

HUMAN

LEOPARD

FOSSA

DOG

OTTER

Node 3

Node 4

Node 2

Node 1

Node 0

0 20 40 60 80

© 2012, P. David Polly 5

MakePHYLIPLabels[labels]

Reformats a list of labels to be compatible with PHYLIP. Labels that are longer than 10
characters are truncated, and those that are shorter than 10 characters are padded with
spaces.

Arguments:

• labels is a list of strings to be used as OTU labels for PHYLIP.

Example:

phyliplabels = MakePHYLIPLabels[labels]

{"WALLABY ", "LEOPARD ", "HUMAN ", "OTTER ", "FOSSA ", "DOG "}

PhylogeneticMatrices[tree]

Creates the phylogenetic matrices needed for ancestral node reconstruction and other
comparative statistical methods based on Generalized Linear Models (GLM). The function
produces three matrices: the first describes the shared ancestry of the tip taxa (VarY), the
second describes the shared ancestry between the tips and the nodes (VarAY), and the third
describes the shared ancestry of the nodes (VarA). Matrices are returned with row and
column labels. These matrices are described by Martins and Hansen (1997).

Arguments:

• tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

Example:

{varY, varAY, varA} = PhylogeneticMatrices[tree];

PhylogeneticsVersion[]

Prints the version number and citation for the current installation.

Example:

PhylogeneticsVersion[]

PollyPhylogenetics 2.0

© 2012, P. David Polly 6

RandomWalk[n, i]

This function performs a Brownian motion random walk for n generations with
a step rate of i. The walk performed by this function has a stochastically
variable rate, with the change at each generation is drawn from a normal
distribution whose mean is zero and whose standard deviation equals i.

Arguments:

• n is the number of steps (generations) in the random walk.
• i is a positive real number for the per-step rate of change

Example:

walk = RandomWalk[100, 1];

ListPlot[walk, Axes->False, Frame->True, Joined->True, PlotRange->All]

ReadNewick[f i lename]

Reads one or more Newick format trees from a text file and prepares them for use by
removing carriage returns, line feeds, and other extraneous characters. A Newick tree is
represented as a string consisting of tip names, branch lengths (separated from tip names or
nodes by colons), and parentheses. Newick tree formats are described in detail in
Felsenstein (2004). For example, this Newick string describes the following tree:

(WALLABY:80,(HUMAN:65,((LEOPARD:35,FOSSA:35):20,(DOG:35,OTTER:35):20):10):15);

0 20 40 60 80 100

-6

-4

-2

0

2

© 2012, P. David Polly 7

Arguments:

• filename is the name, with path if needed, of a text file containing only
Newick format trees.

Example:

tree=ReadNewick[“/Users/Data/mytree.tre”]

(WALLABY:80,(HUMAN:65,((LEOPARD:35,FOSSA:35):20,(DOG:35,OTTER:35):20):10)
:15);

ReadPhylip[f i lename]

This function reads in a Phylip formatted cladistic character matrix and returns it as an array
with the taxon name in the first column and the characters separated into columns.

Arguments:

• filename is the name, with path if needed, of a text file containing only
Newick format trees.

Example:

data=ReadPhylip[“/Users/Data/infile.txt”]

ReconstructNodes[Tree, Trait]

This function returns the estimated rate of evolution of the trait on the tree, a list of
reconstructed values of trait Y for each node on the tree, and the standard deviation of the
node estimate due to variation in the evolutionary process.

The per-step rate of evolution is estimated as the square-root of the mean of the squared
standardized independent contrasts (Felsenstein, 1985), which is equivalent to the method
described by Martins (1994) when a Brownian motion model of evolution is assumed. Note
that the rate parameter returned here is the per-step rate per unit of branch length in the

WALLABY

HUMAN

LEOPARD

FOSSA

DOG

OTTER

Node 3

Node 4

Node 2

Node 1

Node 0

0 20 40 60 80

© 2012, P. David Polly 8

tree, not the squared rate (the latter also referred to as the variance rate or σ2). The rate is
returned in the first matrix of the results.

The ancestral node values are reconstructed using the generalized linear model (also known
as phylogenetic generalized least squares, or PGLS) described by Martins and Hansen
(1997; see also Rohlf, 2001). This method assumes a Brownian motion model of evolution
and provides the same estimates as squared-change parsimony (Maddison, 1991) and
maximum-likelihood (Schluter et al., 1997). The node values are returned in the second
matrix of the results.

The standard deviation of each node describes the uncertainty due to the evolutionary
process, which in this case is assumed to be Brownian motion. The node values are
distributed normally (Felsenstein 1973, 2004). The standard deviations reported by this
function are the square roots of the node variances based on the corrected equations given
by Rohlf (2001) and calculated by successive re-rooting of the tree (Garland and Ives, 2000).
The standard deviations of the nodes are returned in the third matrix of the results.

Note that the rate, the node reconstructions, and the standard deviations of the nodes are all
parameters which have uncertainties due to estimation. The uncertainty is a complicated
function of the rate, the number of branches on the tree, the topology and lengths of the
branches, and the mode of evolution. One can explore the magnitude of the estimation
errors by Monte Carlo simulation of data on the tree using the
SimulateContinuousTraitOnTree[] function that is included in this package.

Arguments:

• Tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

• Trait is a 2 x n matrix with tip labels in the first column and values of a
continuous trait in the second column. Tip labels must match the labels used
in the tree.

Example:

{rate, nodes, sd} = ReconstructNodes[tree, Y];

RerootTree[tree, node]

This function reroots a Newick tree at a specified node.

Arguments:

• tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

• node is the name of the node where the new tree will be rooted. The
available names can be displayed by plotting the tree with
DrawNewickTree[tree].

Example:

© 2012, P. David Polly 9

 DrawNewickTree[tree]

newtree = RerootTree[tree, “Node 2”];

DrawNewickTree[newtree]

SimulateContinuousTraitOnTree[Tree, Rate (,StartValue, IncludeNodes)]

This function simulates the evolution of a continuous trait on a tree using a Brownian motion
model of evolution. By default the trait starts with a value of 0.0 at the root of the tree (this
can be changed by specifying a different value as the third input parameter of the function).
Evolution is simulated along each branch by Brownian motion using the rate specified by the
second input parameter. Note that Rate is the per-step rate of change, not the squared per-
step rate of change (σ2 of authors). The function returns a list of node and tip labels
followed by the simulated trait value.

Arguments:

• Tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

1

2

3

4

5

6

7

8

9

Node 3

Node 4

Node 2

Node 1

Node 6

Node 7

Node 5

Node 0

0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

Node 1

Node 2

Node 6

Node 7

Node 5Node 4

Node 3

Node 0

0 5 10 15

© 2012, P. David Polly 10

• Rate is the amount of trait change per unit of branch length (as specified in
the tree)

• StartValue is the optional starting value of the trait at the root of the tree (by
default the value is 0)

• IncludeNodes is the optional parameter that indicates whether simulated
node values should be returned (1) or not returned (0, default)

Example:

SimulateContinuousTraitOnTree[myTable, 1]

SimulateCorrelatedTraitsOnTree[Tree, CovarianceMatrix (,StartVector,
IncludeNodes)]

This function simulates the evolution of k continuous correlated traits on a tree using a
Brownian motion model of evolution. By default each trait starts with a value of 0.0 at the
root of the tree (this can be changed by specifying a different value as part of a vector in the
third input parameter of the function). The number of traits is determined by the covariance
matrix, as is the rate. The step variance rate for each trait (σ2 of authors) is the variance
recorded for that trait in the diagonal of the covariance matrix. The function returns a list of
node and tip labels followed by vectors containing the simulated trait values.

Arguments:

• Tree is a string containing a tree with branch lengths in Newick format or a
tree table of the sort produced by TreeToTable[].

• CovarianceMatrix is a square symmetric matrix describing the variance and
covariances of the trait. Note that the variances are used as the rate
parameters in the simulation.

• StartVector is an optional vector containing the starting value of each trait at
the root of the tree (by default the value is 0)

• IncludeNodes is the optional parameter that indicates whether simulated
node values should be returned (1) or not returned (0, default)

Example:

SimulateCorrelatedTraitsOnTree[myTree, {{.9, .3},{.3, .5}}]

TableToTree[table]

Parses a tree table and returns a Newick format tree in a single string with no spaces or line
feeds. The table should be in the same format as the ones returned by the TreeToTable[]
function.

Arguments:

© 2012, P. David Polly 11

• table has one row for each branch in the tree and four columns: the first
column contains the name of the descendant tip or node, the second column
contains the name of the ancestor tip or node, the third column contains the
length of the branch, and the fourth column indicates whether the branch
ends in a tip (1) or a node (2).

Example:

myTable = {{"Descendant", "Ancestor", "Branch Length", "Tip?"}, {"1", "Node
0", 1, 1}, {"2", "Node 1", 1, 1}, {"3", "Node 1", 1, 1}, {"Node 1", "Node 0", 1, 0}}

TableToTree[myTable]

(1:1,(2:1,3:1):1);

TreeToTable[tree]

Parses a Newick format tree, supplied as a single string with no spaces or line feeds (such as
the string given by the function ReadNewick[]) and returns a table with one row for each
branch in the tree and four columns: the first column contains the name of the descendant
tip or node, the second column contains the name of the ancestor tip or node, the third
column contains the length of the branch, and the fourth column indicates whether the
branch ends in a tip (1) or a node (2). This table (minus its header row) is used by other
functions in this package, notably PhylogeneticMatrices[].

Arguments:

• tree is a Newick format tree entered as a single string, similar to the format
produced by ReadNewick[].

Example:

myTree = "(1:1,(2:1,3:1):1);"

TreeToTable[myTree] //MatrixForm

Descendant Ancestor Branch Length Tip?
1 Node 0 1 1
2 Node 1 1 1
3 Node 1 1 1

Node 1 Node 0 1 0

© 2012, P. David Polly 12

Acknowledgements

Jim Rohlf and Emilia Martins helped interpret some of their equations. Joe Felsenstein gave
advice on converting branch lengths to variance units for some of the earliest versions of
functions contained in this package. Michelle Lawing, Aida Gómez Robles, Jesualdo Fuentes
Gonzales, and members of my G562 course on geometric morphometrics have made
suggestions that have improved the accuracy and operation of these functions.

Bibl iography

Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous
characters. American Journal of Human Genetics, 25: 471-492.

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist, 125:
1-15.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Mass.

Garland, T. Jr. and A. R. Ives. 2000. Using the past to predict the present: confidence
intervals for regression equations in phylogenetic comparative methods. American
Naturalist, 155: 346-364.

Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for
continuous-valued characters on a phylogenetic tree. Systematic Zoology, 40: 304—
314.

Martins, E. P. 1994. Estimating the rate of phenotypic evolution from comparative data.
American Naturalist, 144: 193-209.

Martins, E. P. and T. F. Hansen. 1997. Phylogenies and the comparative method: a general
approach to incorporating phylogenetic information into the analysis of interspecific
data. American Naturalist, 149: 646-667.

Rohlf, F. J. 2001. Comparative methods for the analysis of continuous variables: geometric
interpretations. Evolution, 55: 2143-2160.

Schluter, D., T. Price. A. O. Mooers, and D. Ludwig. Likelihood of ancestor states in adaptive
radiation. Evolution, 51: 1699-1711.

